Products of Factorial Schur Functions

نویسنده

  • Victor Kreiman
چکیده

The product of any finite number of factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes a specialization of the Molev-Sagan rule, which in turn generalizes the classical Littlewood-Richardson rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Schur and Factorial Schur Functions

The product of any finite number of Schur and factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes the classical Littlewood-Richardson rule.

متن کامل

Factorial Schur Functions and the Yang-Baxter Equation

Factorial Schur functions are generalizations of Schur functions that have, in addition to the usual variables, a second family of “shift” parameters. We show that a factorial Schur function times a deformation of the Weyl denominator may be expressed as the partition function of a particular statistical-mechanical system (six-vertex model). The proof is based on the Yang-Baxter equation. There...

متن کامل

A Littlewood-Richardson Rule for factorial Schur functions

We give a combinatorial rule for calculating the coe cients in the expansion of a product of two factorial Schur functions. It is a special case of a more general rule which also gives the coe cients in the expansion of a skew factorial Schur function. Applications to Capelli operators and quantum immanants are also given.

متن کامل

Schur Type Functions Associated with Polynomial Sequences of Binomial Type

We introduce a class of Schur type functions associated with polynomial sequences of binomial type. This can be regarded as a generalization of the ordinary Schur functions and the factorial Schur functions. This generalization satisfies some interesting expansion formulas, in which there is a curious duality. Moreover this class includes examples which are useful to describe the eigenvalues of...

متن کامل

Shift Operators and Factorial Symmetric Functions

A new class of symmetric functions called factorial Schur symmetric functions has recently been discovered in connection with a branch of mathematical physics. We align this theory more closely with the s tandard symmetric function theory, giving the factorial Schur function a tableau definition, introducing a shift operator and a new generat ing function with which we extend to factorial symme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008